Czy druga opcja jest wystarczająco bezpieczna, skoro nie rozumiemy, jak działa algorytm?
W obu przypadkach warunek jest identyczny; mieć dużą ilość danych dobrej jakości. W przypadku uczenia nadzorowanego wykorzystujemy dane oznaczone etykietami i trenujemy algorytm, aby klasyfikować dane jako dane wejściowe w najbardziej efektywny sposób lub dokonywać predykcji. W patologii przedniego odcinka badanie przesiewowe w kierunku stożka rogówki jest oczywistym zastosowaniem. Aby opracować skuteczny algorytm, trzeba mieć dane treningowe z różnych grup (stożek rogówki kontra normalna rogówka). Bez względu na rodzaj zastosowanego algorytmu (regresja logistyczna, drzewa decyzyjne, sieci neuronowe), używa się danych wejściowych, których pochodzenie jest wyraźnie określone. W przypadku nadzorowanego uczenia się podejście jest znacząco odmienne; problem polega zwykle na odkryciu ukrytych i nieznanych relacji obecnych w odmiennym zbiorze danych lub poszukiwaniu nieznanych wzorców. Jest to nie tyle kwestia przewidywania, co odkrywania powiązań między pewnymi danymi, które pozwalają na ich grupowanie, co umożliwia klasyfikację dużych ilości danych. Algorytmy pozwalają zmniejszyć wymiarowość danych wprowadzanych do systemu i oszacować odległość w mniejszej przestrzeni rezydualnej między danymi, które chcemy pogrupować. Wykorzystaliśmy ten proces do oceny możliwości automatycznej klasyfikacji dużej liczby badań topograficznych, które mogą być bardzo interesujące dla szybkiego odnalezienia określonych kategorii (oczy operowane z powodu chirurgii refrakcyjnej, stożka rogówki itp.). W każdym razie ważne jest, aby wyjaśnić możliwe nieporozumienia; jeśli algorytmy są budowane zgodnie z dobrze zidentyfikowanym podejściem, zmienne wykorzystywane do tworzenia grupowań nie zawsze są łatwe do zidentyfikowania. Zawsze trzeba być ostrożnym i mieć metody, aby ograniczyć ryzyko przetrenowania algorytmu (overfitting) i zapewnić, że rozwijany model będzie mógł być stosowany wobec innych pacjentów.
Ważnym osiągnięciem jest opracowanie formuły PEARL-DGS – formuły obliczania mocy soczewek wewnątrzgałkowej opartej na sztucznej inteligencji. Jakie są jego parametry i jak mogą być dziś wykorzystywane i testowane przez praktyków?
Formuła PEARL-DGS opiera się na modelu optycznym wykorzystującym formuły grubych soczewek, algorytmy AI do przewidywania anatomicznego położenia implantu oraz krzywizny tylnej powierzchni rogówki (gdy ta powierzchnia nie jest mierzona). Zastosowane metody odpowiadają uczeniu nadzorowanemu, które było możliwe dzięki uzyskaniu dużego zestawu danych jakościowych z oczu pseudofakijnych zawierających przedoperacyjne dane biometryczne i uzyskany wynik refrakcji. Wykorzystuje również wartość długości osiowej jako przybliżoną lub dokładną sumę segmentów, jeśli biometr podaje tę wartość. Umożliwia uwzględnienie historii operacji refrakcyjnej rogówki oraz wyników uzyskanych dla pierwszej operacji oka w celu poprawy precyzji obliczenia mocy. Wszystkie kroki użyte do obliczenia mocy implantu zostały opublikowane, a kod został zdeponowany w internetowym katalogu. Formuła dostępna jest pod następującym linkiem: www.iolsolver.com.