Dzisiaj jest środa, 18 wrzesień 2024r
Szukaj
Close this search box.

Przegląd Okulistyczny Nr 3/2023

Opinie ekspertów

WSPÓŁCZESNE METODY NEUROPROTEKCJI W JASKRZE

Actual methods of glaucoma neuroprotections Streszczenie Jaskra to wieloczynnikowa choroba neurodegeneracyjna, która powoduje stopniowy zanik warstwy komórek zwojowych siatkówki i…

Forum kliniczne

Alergiczne zapalenie brzegów powiek – wybrane zagadnienia

Allergic blepharitis-select problems Streszczenie: Zapalenie brzegów powiek jest bardzo powszechnym schorzeniem.      Jego przyczyną mogą być także alergie. Choroby alergiczne oczu obejmują…

Opinie Ekspertów

WSPÓŁCZESNE METODY NEUROPROTEKCJI W JASKRZE

Actual methods of glaucoma neuroprotections Streszczenie Jaskra to wieloczynnikowa choroba neurodegeneracyjna, która powoduje stopniowy zanik warstwy komórek zwojowych siatkówki i…

Forum kliniczne

Alergiczne zapalenie brzegów powiek – wybrane zagadnienia

Allergic blepharitis-select problems Streszczenie: Zapalenie brzegów powiek jest bardzo powszechnym schorzeniem.      Jego przyczyną mogą być także alergie. Choroby alergiczne oczu obejmują…

Temat miesiąca

Sztuczna medycyna w okulistyce nr1 PO 2023

PO-1-2023_small

Przegląd Okulistyczny Nr 3/2023

  • Prof. dr hab. n. med. Andrzej Grzybowski

    Instytut Okulistycznych Badań Naukowych Fundacja Wspierania Rozwoju Okulistyki, Poznań, Kierownik Katedry Okulistyki, Uniwersytet Warmińsko-Mazurski, Olsztyn

SZTUCZNA INTELIGENCJA W OKULISTYCE 2023

Sprawozdanie pokongresowe

W dniu 23 czerwca odbyła się konferencja pt. „Sztuczna inteligencja w okulistyce 2023” zorganizowana przez Fundację Wspierania Rozwoju Okulistyki, Katedrę Okulistyki

UWM oraz Międzynarodowe Towarzystwo Sztucznej inteligencji w okulistyce dzięki grantowi udzielonemu przez Ministerstwo Edukacji i Nauki w ramach programu „Doskonała Nauka”.

Konferencja składała się z czterech sesji, dwie przedstawiały najnowsze osiągnięcia naukowe ze świata, a dwie – najnowsze osiągnięcia naukowe z Polski. W całej konferencji wzięło udział 12 wykładowców. Szczegółowy program i sylwetki wykładowców zaprezentowano na stronie https://aiinophthalmology.com/, a wykłady zostały po konferencji umieszczone na specjalnym kanale na YouTube.

Poniżej przedstawione zostanie streszczenie najważniejszych wykładów.

SIATKÓWKA JAKO OKNO, W KTÓRYM MOŻNA ZOBACZYĆ RYZYKO CHORÓB UKŁADU KRĄŻENIA (CVD)

Prof. Ryo Kawasaki, MD, PhD

Department of Social Medicine, Osaka University

Wstęp: Objawy naczyniowe siatkówki służą jako wskaźniki uszkodzeń narządów końcowych i są przejawem ryzyka sercowo-naczyniowego oraz zaburzeń metabolicznych, takich jak nadciśnienie czy cukrzyca. Wśród nich szczególnie widoczne są objawy skrzyżowania tętniczożylnego (A-V), odzwierciedlające przewlekłe nadciśnienie i stwardnienie tętnic. Chociaż objawy te wiążą się z ryzykiem sercowo-naczyniowym, ich wykorzystanie w warunkach klinicznych lub badaniach przesiewowych jest ograniczone ze względu na złożoność spójnej klasyfikacji. Najnowsze osiągnięcia technologiczne, takie jak głębokie uczenie się, zrewolucjonizowały tę dziedzinę. Wykład podzielony jest na dwie części skupiające się na ocenie nasilenia objawów skrzyżowania AV oraz ocenie profilu ryzyka chorób układu krążenia (CVD).

Część I: Ocena nasilenia objawów skrzyżowania tętniczo-żylnego siatkówki

Metody: Stworzono kombinację modeli głębokiego uczenia się, aby naśladować proces badania dokonywanego przez specjalistów medycznych, obejmujący identyfikację naczyń, rozróżnianie tętniczek i żyłek, lokalizowanie punktów przecięcia i ocenę ciężkości.

Grupa badana: 684 uczestników badania Ohasama, skupiającego się na nadciśnieniu i chorobach układu krążenia.

Proces obrazowania: Obrazy siatkówki rejestrowano w rozdzielczości 5184 × 3456 pikseli przy użyciucyfrowej kamery siatkówkowej Canon CR-2 AF bez źrenicy.

Budowa modelu

Model segmentacji naczyń: IterNet (https://github. com/conscienceli/IterNet) Model klasyfikacji tętnic/ żył: SeqNet (https://github.com/conscienceli/SeqNet) Wykrywanie punktów skrzyżowania tętniczo-żylnych (AV): Wykorzystano szkieletową mapę statków do precyzyjnego wykrywania.

Adnotacja dotycząca skrzyżowania AV: Obrazy zostały szczegółowo sprawdzone i ocenione przez doświadczonego okulistę.

Model oceny ważności punktu skrzyżowania AV: Dane podzielono na zbiory szkoleniowe, walidacyjne i testowe.

Zwiększanie wydajności danych: w celu zwiększenia wydajności modeli głębokiego uczenia wykorzystano łącznie 11 operatorów.

Sieć zespołów zajmujących się wieloma diagnostykami (MDTNet): wprowadzona w celu rozwiązania problemu niejednoznaczności etykiet i braku równowagi w dystrybucji.

Wyniki: Metodą zweryfikowano punkty skrzyżowania z precyzją na poziomie 96,3% każdy. Zgodność oceny specjalisty z oceną szacunkową była dobra (wartość kappa: 0,85, dokładność: 0,92).

Dyskusja: Innowacyjna sieć zespołów multidiagnostycznych (MDTNet) poprawiła dokładność modelu. Ten proces rywalizuje z oceną specjalistów bez konieczności ekstrakcji określonych cech. Dostępność kodu zapewnia powtarzalność.

Implikacje: Metodę tę można zintegrować z bieżącymi programami przesiewowymi ryzyka CVD, umożliwiając analizę znaków skrzyżowania A-V bez dodatkowego obciążenia pracą człowieka

Część II: Wyjaśnialna ocena profilu ryzyka chorób sercowo-naczyniowych

Metody: W tej części omówiono profilowanie ryzyka CVD przy użyciu modeli głębokiego uczenia się, korzystając ze zbioru danych z brytyjskiego Biobanku, zawierającego 52 297 obrazów siatkówki i dane dot. tradycyjnego ryzyka CVD.

Modele

  • Model „xMACE”: dwuetapowy model głębokiego uczenia się, który najpierw szacuje indywidualne czynniki ryzyka CVD, a następnie ocenia główne niekorzystne zdarzenia sercowo-naczyniowe (MACE).
  • Model „xMACE+”: Model ten integruje tradycyjne czynniki ryzyka CVD i obrazy siatkówki.

Wyniki: Zaproponowane modele oferują obiecujące możliwości. Model xMACE wykazał się niezwykłą dokładnością (ROC-AUC 0,738 [95% CI 0,710– 0,766]), przewyższając tradycyjne modele oparte na wynikach, takie jak SCORE (0,682 [0,640–0,719]). Był także porównywalny z modelami sieci neuronowych opartymi na tradycyjnych czynnikach ryzyka CVD.

Omówienie: Model xMACE+, wykorzystujący zarówno czynniki ryzyka CVD, jak i obrazy siatkówki, uzyskał najlepsze wyniki. Niemniej jednak samodzielny model xMACE wykazał się niezwykłą precyzją w szacowaniu ryzyka CVD i 5-letniego MACE, przewyższając tradycyjne modele i dopasowując się do modeli sieci neuronowych opierających się na standardowych czynnikach ryzyka CVD.

Implikacje: W sytuacji gdy badanie krwi w celu oceny ryzyka CVD jest niedostępne, samo obrazowanie siatkówki może dostarczyć kompleksowego profilu ryzyka CVD, wskazując główne ryzyko przyczyniające się do zwiększonego zagrożenia.

Wniosek: Badanie objawów naczyniowych siatkówki lub samych obrazów siatkówki oferuje ekscytującą drogę w ocenie i modyfikacji ryzyka sercowo-naczyniowego. Nieinwazyjna ocena z wykorzystaniem obrazów siatkówki może w wyjątkowy sposób służyć jako biomarker odzwierciedlający profil ryzyka i torujący drogę dla bardziej spersonalizowanych i ukierunkowanych środków zapobiegawczych. Synergistyczne podejście tradycyjnych czynników ryzyka CVD i obrazowania siatkówki, w połączeniu z modelami głębokiego uczenia się, zapewnia solidne narzędzie do zrozumienia ryzyka sercowo-naczyniowego i zarządzania nim. Potencjał objawów siatkówkowych jako okna pozwalającego dostrzec ryzyko chorób sercowo-naczyniowych podkreśla znaczenie integracji nowoczesnej technologii z wiedzą kliniczną w celu stworzenia sprawnego, precyzyjnego i praktycznego rozwiązania w zakresie opieki zdrowotnej.

AKTUALNE INICJATYWY I WYSIŁKI W ZAKRESIE EDUKACJI AI W OKULISTYCE

Prof. Sally Baxter, MD, MSc

University of California San Diego

Szybki rozwój sztucznej inteligencji w medycynie doprowadził do zwiększenia możliwości szkoleń i edukacji. Lekarze zajmujący się okulistyką i badacze nauk wizualnych muszą rozumieć rozwój i wdrażanie modeli sztucznej inteligencji, a także ich zalety i ograniczenia. Względy etyczne mają kluczowe znaczenie z uwagi na niewłaściwe wykorzystanie danych i niezamierzone konsekwencje obserwowane w innych branżach. Rozszerzają się możliwości edukacyjne w zakresie sztucznej inteligencji, szczególnie w okulistyce. Rezydenci okulistyki w USA i Europie tradycyjnie korzystali z kursu podstawowego i nauk klinicznych (BCSC) Amerykańskiej Akademii Okulistyki (AAO). AAO włącza obecnie do programu nauczania BCSC rozdziały dotyczące sztucznej inteligencji, obejmujące zasady sztucznej inteligencji i jej wpływ na okulistykę. Specjalistyczne szkolenia stypendialne i programy studiów w zakresie sztucznej inteligencji, wspierane przez organizacje takie jak Narodowa Biblioteka Medycyny Stanów Zjednoczonych (NLM), oferują dogłębną wiedzę specjalistyczną w zakresie sztucznej inteligencji, w tym wdrożenie kliniczne i wsparcie w podejmowaniu decyzji. Dla uznanych okulistów i naukowców zajmujących się okulistyką dostępne są krótkoterminowe możliwości edukacyjne. Amerykańskie Stowarzyszenie Informatyki Medycznej oferuje kursy „10×10” dotyczące integracji sztucznej inteligencji z procesami klinicznymi. Ponadto konferencje takie jak AAO i ARVO organizują kursy i sympozja na temat sztucznej inteligencji, podczas których omawiane są najnowocześniejsze badania. AAO współpracowało z American College of Radiology w celu opracowania modułów sztucznej inteligencji dla okulistyki na platformie AI-LAB, która umożliwia użytkownikom angażowanie się w przypadki użycia w obrazowaniu medycznym. Podsumowując, istnieje coraz większa liczba możliwości edukacyjnych w zakresie sztucznej inteligencji na różnych etapach kariery.

Fot. 1. Prelegenci sesji I konferencji„Sztuczna inteligencja w okulistyce 2023”

ALGORYTMY SZTUCZNEJ INTELIGENCJI MODELOWANE NA PODSTAWIE ZDJĘĆ DNA OKA DO ZASTOSOWAŃ OKULISTYCZNYCH I NIEOKULISTYCZNYCH

Prof. dr hab. n. med. Andrzej Grzybowski Uniwersytet Warmińsko-Mazurski w Olsztynie; Instytut Badań Okulistycznych w Poznaniu

Wykład przedstawił dogłębną analizę najnowszych osiągnięć w zastosowaniu sztucznej inteligencji (AI) do obrazów dna oka. W ramach przeglądu zwrócono uwagę na wykorzystanie różnorodnych algorytmów sztucznej inteligencji do szeregu zadań, w tym na ich zastosowanie zarówno w schorzeniach okulistycznych, jak i nieokulistycznych. Integracja algorytmów AI do interpretacji obrazów siatkówki oferuje nowatorskie rozwiązanie, wykazujące często większą dokładność w wykrywaniu schorzeń okulistycznych i nieokulistycznych w porównaniu ekspertów klinicznych. W ostatnim czasie gwałtowny wzrost ilości danych medycznych utorował drogę do integracji sztucznej inteligencji i głębokiego uczenia się, umożliwiając natychmiastową analizę. Ta konwergencja może zrewolucjonizować opiekę zdrowotną poprzez zwiększenie precyzji, szybkości i efektywności przepływu pracy, przy jednoczesnym obniżeniu kosztów i zwiększeniu dostępności. Co więcej, obiecuje minimalizację błędów i zmianę krajobrazu kształcenia i szkolenia pracowników służby zdrowia.

AKTUALNE INICJATYWY I WYSIŁKI W ZAKRESIE EDUKACJI AI W OKULISTYCE

Dr hab. Khalid Saeed

Politechnika Białostocka, Universidad dela Costa, Barranquilla

Biometria tęczówki i siatkówki, wpływ chorób oczu na rozpoznawanie człowieka metodami biometrycznymi. Relacja okulista-informatyk i sztuczna inteligencja w różnych aspektach okulistycznych

Tradycyjne sposoby automatycznego uwierzytelniania są albo oparte na posiadaniu przy użyciu czegoś, co posiadamy (karta kredytowa, karta inteligentna, paszport, dowód osobisty itp.), albo na wiedzy i wykorzystują coś, co znamy (hasło, PIN). Istnieje jednak inny sposób uwierzytelniania użytkowników, nietradycyjny, ale cieszący się coraz większą popularnością. Jest to typ oparty na biometrii (identyfikator biometryczny) i wykorzystuje coś w zależności od tego, czym jesteśmy. W rzeczywistości to właśnie wady tradycyjnych metod uwierzytelniania dały początek BIOMETRII.

Kategorie biometryczne:

1. Fizjologiczne (biometria poznawcza) Fizjologiczne cechy biometryczne mierzą odrębne cechy ludzi, zwykle (ale nie zawsze lub niecałkowicie) podyktowane ich genetyką. Opierają się na pomiarach i danych pochodzących z bezpośredniego pomiaru określonej części ciała człowieka. Odciski palców, tęczówka, twarz, zapach, siatkówka, ucho, układ naczyniowy, usta, geometria dłoni i DNA to przykłady kategorii biometrii fizjologicznej.

  1. 2.  Behawioralne (behawiometria)

Cechy biometrii behawioralnej mierzą odrębne działania człowieka i generalnie bardzo trudno je skopiować z jednej osoby na drugą. Pośrednio mierzą cechy ludzkiego ciała. Przykładami takich cech są rozpoznawanie mowy i mówiącego, podpis i pismo odręczne, dynamika naciśnięcia klawiszy, dynamika kliknięcia myszy, chód (sposób chodzenia) i wiele innych. Niektóre cechy behawioralne mogą nawet nie przychodzić na myśl, jak mruganie oczami lub ruchy palców.

3. Biometria tęczówki – rozpoznawanie człowieka na podstawie kodu informacyjnego tęczówki

Tęczówka to jedna z najpopularniejszych i stosowanych w praktyce cech biometrycznych. Najczęściej używanymi algorytmami są algorytmy Daugmana, Wildesa i Ma. W moim zespole biometrii mamy także osiągnięcia w zakresie wykorzystania własnych metodologii przetwarzania obrazu tęczówki. Jako przykład czytelnik może posłużyć się publikacją:

„Segmentacja tęczówki z wykorzystaniem algorytmu wyszukiwania harmonii i szybkiego dopasowywania okręgu z detekcją plamek”. K. Malinowski i K. Saeed, Elsevier 2022.

Na algorytmy rozpoznawania tęczówki wpływają jednak choroby oczu, które zakrywają lub zamykają, powodując utratę części niezbędnych informacji, przez co metody identyfikacji nie działają skutecznie lub co najmniej z dużą dokładnością.

Metodologia: Biometria wykorzystuje charakterystyczne i mierzalne cechy obrazu zebranego z ludzkiej siatkówki lub tęczówki, a następnie przekształca te informacje w kod zrozumiały dla systemu rozpoznawania. We wszystkich moich studiach i kierunkach badawczych głównym celem było znalezienie i uporanie się z prostym, łatwym do wdrożenia sposobem opisu obrazu biometrycznego. Jest to ważny i podstawowy etap przetwarzania obrazu biometrycznego. Na etapie klasyfikacji obrazu do celów biometrycznego rozpoznawania obiektów zastosowano metody sztucznej inteligencji, które są stale udoskonalane i rozwijane.

Jednym z naszych pomysłów opartych na sztucznej inteligencji, które ja i mój zespół wykorzystujemy do uzyskania mierzalnych cech i przygotowania obrazu medycznego do lepszego cyfrowego opisu i klasyfikacji, jest zasada przekształcania szumu w grupę punktów o określonym układzie (Saeed K. Applied Numerical Mathematic 2014) lub wcześniej opisanych w publikacji algorytmów opartych na sieci neuronowej (Saeed et al. IEEE Transactions on Industrial Electronics 2007). Stąd za pomocą metody AI (typu uczenia maszynowego) możemy rozszerzyć algorytmy przetwarzania tęczówki i siatkówki, aby zastosować je do dużych zbiorów danych zebranych z różnych ludzkich oczu w celu zbadania ich w celu rozpoznania człowieka.

Jednakże nadal istnieją problemy z uzyskaniem takich danych, a mianowicie rozpoznawanie człowieka przez siatkówkę jest niepraktyczne z dwóch głównych powodów: dyskomfortu oraz małej ilości danych do porównań i klasyfikacji. Dyskomfort wynika z tego, że czujemy się jak u okulisty, gdzie korzysta się z urządzeń stacjonarnych. Poza tym nie jest łatwo zebrać ogromne dane w takich warunkach. Dlatego rozpoznawanie człowieka przez siatkówkę ogranicza się do kilku szczególnych przypadków (przykładem jest pokój siatkówka na lotniskach). Z drugiej strony, co jest rzeczywiście obiecujące, poziom technologii pozwala na coraz wygodniejsze urządzenia do sprawdzania i gromadzenia danych. Dostępne duże zbiory danych umożliwiłyby zastosowanie zaawansowanych podejść opartych na sztucznej inteligencji i podejmowanie dokładnych i szybkich decyzji. Tak jest obecnie – obraz siatkówki można wykonać przenośną kamerą dna oka. Co więcej, telefonu komórkowego można używać do gromadzenia danych i przesyłania ich do okulisty w celu sprawdzenia stanu siatkówki lub do odpowiednich organów w innych zastosowaniach.

PRZEWIDYWANIE RYZYKA KRÓTKOWZROCZNOŚCI U DZIECI: PODEJŚCIE MONTE CARLO DO OCENY WIARYGODNOŚCI MODELI UCZENIA MASZYNOWEGO

Prof. dr hab. Andrzej Jankowski

Uniwersytet Warmińsko-Mazurski w Olsztynie

W odpowiedzi na globalny wzrost krótkowzroczności u dzieci w niniejszym badaniu przedstawiono nowatorskie podejście do przewidywania ryzyka krótkowzroczności za pomocą godnych zaufania modeli uczenia maszynowego opracowanych przez konsorcjum kalkulatora ryzyka krótkowzroczności (MRC). Wykorzystując dane od 3989 dzieci [1], skupiliśmy się na wiarygodności modeli uczenia maszynowego, w szczególności na ich efektywności i solidności. MRC zastosowało metodologię opracowania i oceny uczenia maszynowego, dostosowując ją do potrzeb projektu z wykorzystaniem metody Monte Carlo i walidacji krzyżowej [2,3]. Połączenie klasyfikatorów i modeli regresji dało obiecujące wyniki w przewidywaniu ryzyka krótkowzroczności. Przyszłe badania będą dotyczyły wykorzystania danych obrazowych i syntetycznych w celu zwiększenia dokładności przewidywań poprzez techniki transferu uczenia się.

Współautorami badania są prof. Andrzej Grzybowski, Fundacja Rozwoju Okulistyki i Uniwersytet Warmińsko-Mazurski), Polska; prof. Mohammad Hassan Emamian, Centrum Badań nad Epidemiologią Okulistyki, Uniwersytet Nauk Medycznych Shahroud, Shahroud, Iran; prof. Olavi Pärssinen, Centrum Badań Gerontologicznych i Wydział Nauk o Sporcie i Zdrowiu, Uniwersytet w Jyväskylä, Finlandia; prof. Carla Lanca Lizbońska Szkoła Technologii Medycznych, Portugalia; dr Shiva Mehravaran Morgan State University, USA; Klaus Nordhausen, Centrum Badań Gerontologicznych i Wydział Nauk o Sporcie i Zdrowiu, Uniwersytet w Jyväskylä, Finlandia; prof. Piotr Artiemjew, UWM i Krzysztof Ropiak, UWM; Radosław Cybulski, UWM; Cezary Morawski, UWM; Andrzej Jankowski, UWM; Mateusz Śliwiński, UWM; Andrzej Strzeszewski, UWM; Adam Jankowiak, UWM; Michał Domian, UWM; Paweł Budziński, UWM; Bartosz Ćwiek, UWM; Jakub Przyborowski z UWM i Jakub Kasjaniuk z UWM.

Piśmiennictwo:

  1. Emamian MH, et al. Cohort Profile: Shahroud Schoolchildren Eye Cohort Study (SSCECS). Int J Epidemiol. 2019;48(1):27-27f.
  2. Robert, C. P., & Casella, G. (2013). Monte Carlo Statistical Methods. Springer.
  3. Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. IJCAI 1995; 14 (2): 1137-1145.

ZWODNICZE SZTUCZKI

W SZTUCZNEJ INTELIGENCJI: ATAKI KONTRADYKTORYJNE W OKULISTYCE

Dr Agnieszka Zbrzezny

Uniwersytet Warmińsko-Mazurski w Olsztynie; Instytut Badań Okulistycznych w Poznaniu

W ostatnich latach nastąpił znaczny postęp w zakresie systemów sztucznej inteligencji (AI) stosowanych w diagnostyce chorób okulistycznych. Diagnostyka trudnych schorzeń oczu, takich jak zaćma, retinopatia cukrzycowa, zwyrodnienie plamki związane z wiekiem, jaskra czy retinopatia wcześniaków, stała się znacznie mniej skomplikowana dzięki rozwojowi algorytmów AI, które obecnie dorównują okulistom pod względem poziomu skuteczności. Jednak w kontekście tworzenia systemów sztucznej inteligencji do zastosowań medycznych, takich jak identyfikacja chorób oczu, nadrzędne znaczenie ma sprostanie wyzwaniom związanym z bezpieczeństwem i wiarygodnością, w tym pojawiającym się zagrożeniem atakami kontradyktoryjnymi. Badania w coraz większym stopniu koncentrują się na zrozumieniu i łagodzeniu tych ataków, a w ostatnich latach pojawiło się wiele artykułów omawiających ten temat. Podajemy przykłady unikalnych strategii ataków na obrazy medyczne. Niestety, nie opracowano jeszcze unikalnych algorytmów ataków na różne typy obrazów okulistycznych. To zadanie, które trzeba wykonać. W rezultacie konieczne jest zbudowanie algorytmów walidujących obliczenia i wyjaśniających ustalenia modeli sztucznej inteligencji. Koncentrujemy się na atakach kontradyktoryjnych, jednej z najbardziej znanych metod ataku, która dostarcza dowodów (tj. kontradyktoryjnych przykładów) na brak odporności modeli decyzyjnych, które nie zawierają możliwych do udowodnienia gwarancji. Ataki kontradyktoryjne mogą potencjalnie dostarczać niedokładnych wyników w systemach głębokiego uczenia się i mieć katastrofalne skutki w branży opieki zdrowotnej, takie jak oszustwa związane z finansowaniem opieki zdrowotnej i błędne rozpoznanie.

CZY SZTUCZNA INTELIGENCJA MOŻE OCENIĆ NEUROPATIĘ NA PODSTAWIE OBRAZÓW REZONANSU MAGNETYCZNEGO?

Mgr Łukasz Łabieniec

Uniwersytet w Białymstoku

Obrazowanie ludzkiego nerwu wzrokowego i pasma wzrokowego metodą rezonansu magnetycznego ważonego dyfuzyjnie jest technicznie trudne ze względu na mały rozmiar tej struktury, nieodłączny silny sygnał generowany przez otaczającą tkankę tłuszczową i płyn mózgowo-rdzeniowy, oraz z powodu artefaktów ruchowych i zniekształceń sygnału wywołanych prądami wirowymi i podatnością magnetyczną. Z powodów ekonomicznych często ogranicza się możliwości techniczne skanerów i minimalizuje czas akwizycji, co skutkuje niską jakością obrazów ważonych dyfuzyjnie. Wyzwaniem dla obecnych metod traktograficznych są zarówno ocena ciągłości, jak i dokładne śledzenie kierunku przebiegu włókien dróg wzrokowych, tak aby odpowiadały znanej anatomii. Pomimo ograniczeń technicznych i niskiej rozdzielczości obrazu, zaprezentowano nową procedurę wizualizacji ludzkich dróg wzrokowych za pomocą mapowania tensora dyfuzji oraz zaproponowano ilościowy pomiar zaniku nerwu wzrokowego na podstawie analizy tych danych. Podejście to można uznać za uzupełniające w stosunku do standardowej metody obrazowania metodą rezonansu magnetycznego ważonego dyfuzją.

SYSTEM AUTOMATYCZNEJ DIAGNOSTYKI CHORÓB W OPARCIU O ANALIZĘ OBRAZÓW DNA OKA WYKONANYCH W OPTYCZNEJ TOMOGRAFII KOHERENTNEJ W OPARCIU O SZTUCZNĄ INTELIGENCJĘ

Prof. Remigiusz Baran

Wyższa Szkoła Inżynierii Komputerowej i Telekomunikacji w Kielcach oraz Prof. Andrzej Dziech, Uniwersytet AGH w Krakowie

Prezentacja pt. „The system for automatic diagnosis of diseases based on the analysis of fundus images made in optical coherence tomography OCT, based on Artificial Intelligence”, autorstwa prof. Andrzeja Dziecha i dr. hab. inż. Remigiusza Barana, dotyczyła bieżących wyników projektu B+R INDOK, o tym samym tytule. Przedstawione w jej trakcie rezultaty obejmowały m.in. dane odnoszące się do dokładności różnych typów detektorów zmian chorobowych opracowanych w ramach projektu, dokonujących ww. detekcji w tzw. B-skanach OCT w oparciu o algorytmy sztucznej inteligencji (głównie sieci neuronowe). Pośród nich najwyższą dokładnością (accuracy minimum 95%) odznaczają się detektory binarne takich zmian jak: odwarstwienie siatkówki sensorycznej, obrzęk siatkówki, torbiele, trakcja szklistkowo-plamkowa. Zaprezentowany został także algorytm HS-vs-Rest, odróżniający (z dokładnością przekraczająca 95%) skany „zdrowe” – bez zmian chorobowych od skanów „chorych” – zawierających takie zmiany. Te oraz inne algorytmy, w tym klasyfikator pełnościennego otworu w plamce (accuracy 99%), stały się podstawą dla organizacji systemu eksperckiego, zdolnego do automatycznego diagnozowania chorób. System ten, w zależności od bazowej architektury (systemy rozmyte i/lub drzewa decyzyjne) jest w stanie rozpoznawać z wysoką dokładnością (accuracy) m.in. zwyrodnienie plamki żółtej (AMD) wysiękowe (96%) i niewysiękowe (93,4%), centralną surowiczą chorioretinopatię (93,9%) oraz retinopatię cukrzycową (92,9%).

Fot. 4. Prelegenci sesji IV konferencji„Sztuczna inteligencja w okulistyce 2023”

Kongres zgromadził 370 uczestników z 55 krajów świata: Polska (155), Chiny (36), USA (15), Niemcy (12), Wielka Brytania (12), Indie (11), Ukraina (10), Włochy (6), Argentyna (5), Pakistan (5), Hongkong (4), Japonia (4), Wenezuela (4), Arabia Saudyjska, Czechy, Hiszpania, Peru, Rumunia, Australia, Austria, Bangladesz, Belgia, Finlandia, Francja, Grecja, Iran, Izrael, Meksyk, Mołdawia, Nepal, Portugalia, Szwajcaria, Turcja, Boliwia, Chile, Egipt, Irlandia, Indonezja, Łotwa, Nigeria, Republika Południowej Afryki, Uganda, Tajwan, Holandia, Ekwador, Kenia, Filipiny, Korea Południowa, Słowacja, Tajlandia, Kanada, Szwecja, Republika Środkowoafrykańska, Singapur i Kuwejt.

Raport został opracowany w ramach projektu „Sztuczna inteligencja w okulistyce” – konferencja naukowa współfinansowanego przez Ministerstwo Edukacji i Nauki w ramach programu „Doskonała Nauka”.

Fot. 2. Dyskusja po zakończeniu sesji II

ZASTOSOWANIA AI W RETINOPATII WCZEŚNIAKÓW

Prof. J. Peter Campbell, MPH

Uniwersytet Zdrowia i Nauki w Oregonie

Retinopatia wcześniaków (ROP) jest główną przyczyną ślepoty u dzieci na całym świecie, mimo że dostępne jest leczenie, a w większości przypadków ślepocie można zapobiec. Profilaktyka pierwotna jest skuteczna poprzez redukcję czynników ryzyka powodujących ROP, np. poprawę monitorowania poziomu tlenu. Profilaktyka wtórna jest skuteczna poprzez rozwój systemów opieki zapewniających badanie wzroku wszystkich dzieci z grupy ryzyka. Profilaktyka trzeciorzędowa zapewnia, że wczesne i trafne rozpoznanie ROP wymagającego terapii doprowadzi do skutecznego leczenia i identyfikacji ustąpienia choroby. Zaproponowano wiele potencjalnych wskazań do stosowania dla algorytmów ROP AI, które mogą mieć wpływ na wszystkie trzy poziomy zapobiegania ROP. Poprzednie prace wykazały, że ocena ciężkości ROP oparta na sztucznej inteligencji może zidentyfikować różnice w epidemiologii ROP pomiędzy szpitalami. Ilościowa ocena ROP poprzez opracowanie skali ciężkości zmian naczyniowych może mieć zastosowanie nie tylko w badaniach przesiewowych ROP, ale także w diagnostyce ilościowej, monitorowaniu, przewidywaniu ryzyka i identyfikacji reaktywacji choroby po leczeniu. Celem sesji jest dokonanie przeglądu wielu potencjalnych zasad postępowania oraz wyzwań związanych z ich wdrażaniem.

Piśmiennictwo polecane:

  1. Sabri K. i wsp. Retinopathy of Prematurity: A Global Perspective and Recent Developments. Pediatrics 2022; 150.
  2. Ting D.S.W. i wsp. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol 2018:bjophthalmol–2018–313173.
  3. Campbell J.P. i wsp. Applications of Artificial Intelligence for Retinopathy of Prematurity Screening. Pediatrics 2021.
  4. Coyner A.S. i wsp. External Validation of a Retinopathy of Prematurity Screening Model Using Artificial Intelligence in 3 Lowand Middle-Income Populations. JAMA Ophthalmol 2022; 140: 791–798.
  5. deCampos-Stairiker M.A. i wsp. Epidemiologic evaluation of retinopathy of prematurity severity in a large telemedicine program in India using artificial intelligence. Ophthalmology 2023.

Co wiemy o problemach związanych z różnicami między diagnozami lekarzy?

Klasycznie diagnozujemy choroby okulistyczne badając morfologię oka. Te obserwacje kliniczne są typowo jakościowe i często przekształcamy te obserwacje morfologiczne w ustrukturyzowane klasyfikacje (na przykład „stadium 1” lub „zaawansowana choroba” w...

Jakie są różnice między uczeniem nadzorowanym i nienadzorowanym w sztucznej inteligencji?

  • Damien Gatinel

    Kierownik oddziału przedniego odcinka i chirurgii refrakcyjnej, Rothschild Foundation Hospital, Paryż, Francja

Czy druga opcja jest wystarczająco bezpieczna, skoro nie rozumiemy, jak działa algorytm? W obu przypadkach warunek jest identyczny; mieć dużą ilość danych dobrej jakości. W przypadku uczenia nadzorowanego wykorzystujemy dane...

Jakie będą kolejne aplikacje oparte na sztucznej inteligencji w segmencie przednim?

Patologie przedniego odcinka oka to szeroki zakres obszarów, w których można rozważyć zastosowanie sztucznej inteligencji. Obliczenie mocy implantu jest oczywiście już częścią problemu, ale pracujemy nad wykorzystaniem sieci neuronowych i...

O uczeniu transferowym, sieci generatywne i więcej

  • Paisan Ruamviboonsuk

    Profesor kliniczny okulistyki, College of Medicine, Rangsit University, zastępca dyrektora szpitala Centers of Medical Excellence; Centre of Excellence for Vitre of Vitre and Retinal Disease, Rajavithi Hospital, Bangkok, Tajlandia

Co to jest uczenie transferowe się i dlaczego uważasz, że może przynieść korzyści w opiece zdrowotnej i okulistyce? Uczenie transferowe (Transfer learning, TL) to rodzaj modelu głębokiego uczenia, który wykorzystuje...

Aktualne kalendarium

Konferencje

Polecamy